Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.349
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732235

RESUMO

The formulation of novel delivery protocols for the targeted delivery of genes into hepatocytes by receptor mediation is important for the treatment of liver-specific disorders, including cancer. Non-viral delivery methods have been extensively studied for gene therapy. Gold nanoparticles (AuNPs) have gained attention in nanomedicine due to their biocompatibility. In this study, AuNPs were synthesized and coated with polymers: chitosan (CS), and polyethylene glycol (PEG). The targeting moiety, lactobionic acid (LA), was added for hepatocyte-specific delivery. Physicochemical characterization revealed that all nano-formulations were spherical and monodispersed, with hydrodynamic sizes between 70 and 250 nm. Nanocomplexes with pCMV-Luc DNA (pDNA) confirmed that the NPs could bind, compact, and protect the pDNA from nuclease degradation. Cytotoxicity studies revealed that the AuNPs were well tolerated (cell viabilities > 70%) in human hepatocellular carcinoma (HepG2), embryonic kidney (HEK293), and colorectal adenocarcinoma (Caco-2) cells, with enhanced transgene activity in all cells. The inclusion of LA in the NP formulation was notable in the HepG2 cells, which overexpress the asialoglycoprotein receptor on their cell surface. A five-fold increase in luciferase gene expression was evident for the LA-targeted AuNPs compared to the non-targeted AuNPs. These AuNPs have shown potential as safe and suitable targeted delivery vehicles for liver-directed gene therapy.


Assuntos
Quitosana , Técnicas de Transferência de Genes , Ouro , Neoplasias Hepáticas , Nanopartículas Metálicas , Humanos , Ouro/química , Nanopartículas Metálicas/química , Células Hep G2 , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Quitosana/química , Células HEK293 , Receptor de Asialoglicoproteína/metabolismo , Receptor de Asialoglicoproteína/genética , Células CACO-2 , Luciferases/genética , Luciferases/metabolismo , Polietilenoglicóis/química , Plasmídeos/genética , Dissacarídeos/química , Terapia Genética/métodos , Polímeros/química , Sobrevivência Celular/efeitos dos fármacos
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 29-39, 2024 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38615163

RESUMO

OBJECTIVES: Trigeminal neuralgia (TN) is a common neuropathic pain. Voltage-gated potassium channel (Kv) has been confirmed to be involved in the occurrence and development of TN, but the specific mechanism is still unclear. MicroRNA may be involved in neuropathic pain by regulating the expression of Kv channels and neuronal excitability in trigeminal ganglion (TG). This study aims to explore the relationship between Kv1.1 and miR-21-5p in TG with a TN model, evaluate whether miR-21-5p has a regulatory effect on Kv1.1, and to provide a new target and experimental basis for the treatment of TN. METHODS: A total of 48 SD rats were randomly divided into 6 groups: 1) a sham group (n=12), the rats were only sutured at the surgical incision without nerve ligation; 2) a sham+agomir NC group (n=6), the sham rats were microinjected with agomir NC through stereotactic brain injection in the surgical side of TG; 3) a sham+miR-21-5p agomir group (n=6), the sham rats were microinjected with miR-21-5p agomir via stereotactic brain injection in the surgical side of TG; 4) a TN group (n=12), a TN rat model was constructed using the chronic constriction injury of the distal infraorbital nerve (dIoN-CCI) method with chromium intestinal thread; 5) a TN+antagonist NC group (n=6), TN rats were microinjected with antagonist NC through stereotactic brain injection method in the surgical side of TG; 6) a TN+miR-21-5p antagonist group (n=6), TN rats were microinjected with miR-21-5p antagonist through stereotactic brain injection in the surgical side of TG. The change of mechanical pain threshold in rats of each group after surgery was detected. The expressions of Kv1.1 and miR-21-5p in the operative TG of rats were detected by Western blotting and real-time reverse transcription polymerase chain reaction. Dual luciferase reporter genes were used to determine whether there was a target relationship between Kv1.1 and miR-21-5p and whether miR-21-5p directly affected the 3'-UTR terminal of KCNA1. The effect of brain stereotaxic injection was evaluated by immunofluorescence assay, and then the analogue of miR-21-5p (agomir) and agomir NC were injected into the TG of rats in the sham group by brain stereotaxic apparatus to overexpress miR-21-5p. The miR-21-5p inhibitor (antagomir) and antagomir NC were injected into TG of rats in the TN group to inhibit the expression of miR-21-5p. The behavioral changes of rats before and after administration were observed, and the expression changes of miR-21-5p and Kv1.1 in TG of rats after intervention were detected. RESULTS: Compared with the baseline pain threshold, the facial mechanical pain threshold of rats in the TN group was significantly decreased from the 5th to 15th day after the surgery (P<0.05), and the facial mechanical pain threshold of rats in the sham group was stable at the normal level, which proved that the dIoN-CCI model was successfully constructed. Compared with the sham group, the expression of Kv1.1 mRNA and protein in TG of the TN group was down-regulated (both P<0.05), and the expression of miR-21-5p was up-regulated (P<0.05). The results of dual luciferase report showed that the luciferase activity of rno-miR-21-5p mimics and KCNA1 WT transfected with 6 nmol/L or 20 nmol/L were significantly decreased compared with those transfected with mimic NC and wild-type KCNA1 WT, respectively (P<0.001). Compared with low dose rno-miR-21-5p mimics (6 nmol/L) co-transfection group, the relative activity of luciferase in the high dose rno-miR-21-5p mimics (20 nmol/L) cotransfection group was significantly decreased (P<0.001). The results of immunofluorescence showed that drugs were accurately injected into TG through stereotaxic brain. After the expression of miR-21-5p in the TN group, the mechanical pain threshold and the expression of Kv1.1 mRNA and protein in TG were increased. After overexpression of miR-21-5p in the sham group, the mechanical pain threshold and the expression of Kv1.1 mRNA and protein in TG were decreased. CONCLUSIONS: Both Kv1.1 and miR-21-5p are involved in TN and miR-21-5p can regulate Kv1.1 expression by binding to the 3'-UTR of KCNA1.


Assuntos
Canal de Potássio Kv1.1 , MicroRNAs , Neuralgia , Neuralgia do Trigêmeo , Animais , Ratos , Antagomirs , Regulação para Baixo , Luciferases , MicroRNAs/genética , Neuralgia/genética , Ratos Sprague-Dawley , RNA Mensageiro , Neuralgia do Trigêmeo/genética , Canal de Potássio Kv1.1/genética
3.
Nanotheranostics ; 8(3): 285-297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577322

RESUMO

Rationale: Microbubble (MB) contrast agents combined with ultrasound targeted microbubble cavitation (UTMC) are a promising platform for site-specific therapeutic oligonucleotide delivery. We investigated UTMC-mediated delivery of siRNA directed against epidermal growth factor receptor (EGFR), to squamous cell carcinoma (SCC) via a novel MB-liposome complex (LPX). Methods: LPXs were constructed by conjugation of cationic liposomes to the surface of C4F10 gas-filled lipid MBs using biotin/avidin chemistry, then loaded with siRNA via electrostatic interaction. Luciferase-expressing SCC-VII cells (SCC-VII-Luc) were cultured in Petri dishes. The Petri dishes were filled with media in which LPXs loaded with siRNA against firefly luciferase (Luc siRNA) were suspended. Ultrasound (US) (1 MHz, 100-µs pulse, 10% duty cycle) was delivered to the dishes for 10 sec at varying acoustic pressures and luciferase assay was performed 24 hr later. In vivo siRNA delivery was studied in SCC-VII tumor-bearing mice intravenously infused with a 0.5 mL saline suspension of EGFR siRNA LPX (7×108 LPX, ~30 µg siRNA) for 20 min during concurrent US (1 MHz, 0.5 MPa spatial peak temporal peak negative pressure, five 100-µs pulses every 1 ms; each pulse train repeated every 2 sec to allow reperfusion of LPX into the tumor). Mice were sacrificed 2 days post treatment and tumor EGFR expression was measured (Western blot). Other mice (n=23) received either EGFR siRNA-loaded LPX + UTMC or negative control (NC) siRNA-loaded LPX + UTMC on days 0 and 3, or no treatment ("sham"). Tumor volume was serially measured by high-resolution 3D US imaging. Results: Luc siRNA LPX + UTMC caused significant luciferase knockdown vs. no treatment control, p<0.05) in SCC-VII-Luc cells at acoustic pressures 0.25 MPa to 0.9 MPa, while no significant silencing effect was seen at lower pressure (0.125 MPa). In vivo, EGFR siRNA LPX + UTMC reduced tumor EGFR expression by ~30% and significantly inhibited tumor growth by day 9 (~40% decrease in tumor volume vs. NC siRNA LPX + UTMC, p<0.05). Conclusions: Luc siRNA LPXs + UTMC achieved functional delivery of Luc siRNA to SCC-VII-Luc cells in vitro. EGFR siRNA LPX + UTMC inhibited tumor growth and suppressed EGFR expression in vivo, suggesting that this platform holds promise for non-invasive, image-guided targeted delivery of therapeutic siRNA for cancer treatment.


Assuntos
Carcinoma de Células Escamosas , Lipossomos , Animais , Camundongos , Lipossomos/química , RNA Interferente Pequeno/genética , Microbolhas , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Receptores ErbB/genética , Luciferases
4.
Sci Rep ; 14(1): 9117, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643232

RESUMO

Milk protein content is an important index to evaluate the quality and nutrition of milk. Accumulating evidence suggests that microRNAs (miRNAs) play important roles in bovine lactation, but little is known regarding the cross-kingdom regulatory roles of plant-derived exogenous miRNAs (xeno-miRNAs) in milk protein synthesis, particularly the underlying molecular mechanisms. The purpose of this study was to explore the regulatory mechanism of alfalfa-derived xeno-miRNAs on proliferation and milk protein synthesis in bovine mammary epithelial cells (BMECs). Our previous study showed that alfalfa miR159a (mtr-miR159a, xeno-miR159a) was highly expressed in alfalfa, and the abundance of mtr-miR159a was significantly lower in serum and whey from high-protein-milk dairy cows compared with low-protein-milk dairy cows. In this study, mRNA expression was detected by real-time quantitative PCR (qRT-PCR), and casein content was evaluated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis were detected using the cell counting kit 8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, western blot, and flow cytometry. A dual-luciferase reporter assay was used to determine the regulation of Protein Tyrosine Phosphatase Receptor Type F (PTPRF) by xeno-miR159a. We found that xeno-miR159a overexpression inhibited proliferation of BMEC and promoted cell apoptosis. Besides, xeno-miR159a overexpression decreased ß-casein abundance, and increased α-casein and κ-casein abundance in BMECs. Dual-luciferase reporter assay result confirmed that PTPRF is a target gene of xeno-miR159a. These results provide new insights into the mechanism by which alfalfa-derived miRNAs regulate BMECs proliferation and milk protein synthesis.


Assuntos
MicroRNAs , Proteínas do Leite , Feminino , Bovinos , Animais , Proteínas do Leite/metabolismo , Medicago sativa/genética , Medicago sativa/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Glândulas Mamárias Animais/metabolismo , Caseínas/genética , Caseínas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Luciferases/metabolismo , Células Epiteliais/metabolismo
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 578-584, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597450

RESUMO

OBJECTIVE: To investigate the regulatory role of miR-26b-3p in proliferation, migration and invasion of glioma. METHODS: The expressions of miR-26b-3p and cAMP-responsive element binding protein 1 (CREB1) in gliomas of different pathological grades were detected with RT-qPCR and Western blotting. Bioinformatic methods were used to analyze the target sequence of miRNA-26b-3p binding to CREB1, and dual luciferase gene reporter experiment was performed to explore the mechanism for targeted regulation of CREB1 by miR-26b-3p. Glioma U251 cells were treated with miR-26b-3p mimic or inhibitor, and the changes in CREB1 expression and cell proliferation, migration, invasion and apoptosis were determined with Western blotting, CCK-8 assay, wound healing assay, Transwell assay, and flow cytometry. RESULTS: The expression of miR-26b-3p decreased while CREB1 expression increased significantly as the pathological grade of gliomas increased (P < 0.05). Dual luciferase gene reporter experiment confirmed that CREB1 was a downstream target of miR-26b-3p. Inhibition of miR-26b-3p significantly upregulated the expression of CERB1, suppressed apoptosis and promoted proliferation and invasion of glioma cells, and overexpression of miR-26b-3p produced the opposite effects (P < 0.05). CONCLUSION: MiR-26b-3p regulates CREB1 expression to modulate apoptosis, proliferation, migration and invasion of glioma cells, thereby participating in tumorigenesis and progression of glioma.


Assuntos
Glioma , MicroRNAs , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Luciferases/genética , MicroRNAs/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1073-1081, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621914

RESUMO

The present study aimed to investigate the effect and mechanism of Bupleuri Radix-Paeoniae Radix Alba medicated plasma on HepG2 hepatoma cells by regulating the microRNA-1297(miR-1297)/phosphatase and tensin homologue deleted on chromosome 10(PTEN) signaling axis. Real-time quantitative PCR(RT-qPCR) was carried out to determine the mRNA levels of miR-1297 and PTEN in different hepatoma cell lines. The dual luciferase reporter assay was employed to verify the targeted interaction between miR-1297 and PTEN. The cell counting kit-8(CCK-8) was used to detect cell proliferation, and the optimal concentration and intervention time of the medicated plasma were determined. The cell invasion and migration were examined by Transwell assay and wound healing assay. Cell cycle distribution was detected by PI staining, and the apoptosis of cells was detected by Annexin V-FITC/PI double staining. The mRNA levels of miR-1297, PTEN, protein kinase B(Akt), and phosphatidylinositol 3-kinase(PI3K) were determined by RT-qPCR. Western blot was employed to determine the protein levels of PTEN, Akt, p-Akt, caspase-3, caspase-9, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). The results showed that HepG2 cells were the best cell line for subsequent experiments. The dual luciferase reporter assay confirmed that miR-1297 could bind to the 3'-untranslated region(3'UTR) in the mRNA of PTEN. The medicated plasma inhibited the proliferation of HepG2 cells, and the optimal intervention concentration and time were 20% and 72 h. Compared with the blank plasma, the Bupleuri Radix-Paeoniae Radix Alba medicated plasma, miR-1297 inhibitor, miR-1297 inhibitor + medicated plasma all inhibited the proliferation, invasion, and migration of HepG2 cells, increased the proportion of cells in the G_0/G_1 phase, decreased the proportion of cells in the S phase, and increased the apoptosis rate. The medicated plasma down-regulated the mRNA levels of miR-1297, PI3K, and Akt and up-regulated the mRNA level of PTEN. In addition, it up-regulated the protein levels of PTEN, Bax, caspase-3, and caspsae-9 and down-regulated the protein levels of p-Akt, p-PI3K, and Bcl-2. In conclusion, Bupleuri Radix-Paeoniae Radix Alba medicated plasma can inhibit the expression of miR-1297 in HepG2 hepatoma cells, promote the expression of PTEN, and negatively regulate PI3K/Akt signaling pathway, thereby inhibiting the proliferation and inducing the apoptosis of HepG2 cells.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , MicroRNAs , Paeonia , Extratos Vegetais , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Hep G2 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2 , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Apoptose , Proliferação de Células , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Mensageiro , Luciferases/metabolismo , Luciferases/farmacologia , Linhagem Celular Tumoral
7.
Methods Mol Biol ; 2797: 211-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570462

RESUMO

Missense mutations in the RAS family of oncogenes (HRAS, KRAS, and NRAS) are present in approximately 20% of human cancers, making RAS a valuable therapeutic target (Prior et al., Cancer Res 80:2969-2974, 2020). Although decades of research efforts to develop therapeutic inhibitors of RAS were unsuccessful, there has been success in recent years with the entrance of FDA-approved KRASG12C-specific inhibitors to the clinic (Skoulidis et al., N Engl J Med 384:2371-2381, 2021; Jänne et al., N Engl J Med 387:120-131, 2022). Additionally, KRASG12D-specific inhibitors are presently undergoing clinical trials (Wang et al., J Med Chem 65:3123-3133, 2022). The advent of these allele specific inhibitors has disproved the previous notion that RAS is undruggable. Despite these advancements in RAS-targeted therapeutics, several RAS mutants that frequently arise in cancers remain without tractable drugs. Thus, it is critical to further understand the function and biology of RAS in cells and to develop tools to identify novel therapeutic vulnerabilities for development of anti-RAS therapeutics. To do this, we have exploited the use of monobody (Mb) technology to develop specific protein-based inhibitors of selected RAS isoforms and mutants (Spencer-Smith et al., Nat Chem Biol 13:62-68, 2017; Khan et al., Cell Rep 38:110322, 2022; Wallon et al., Proc Natl Acad Sci USA 119:e2204481119, 2022; Khan et al., Small GTPases 13:114-127, 2021; Khan et al., Oncogene 38:2984-2993, 2019). Herein, we describe our combined use of Mbs and NanoLuc Binary Technology (NanoBiT) to analyze RAS protein-protein interactions and to screen for RAS-binding small molecules in live-cell, high-throughput assays.


Assuntos
Luciferases , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes , Comunicação Celular , Mutação
8.
Sci Rep ; 14(1): 9710, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678103

RESUMO

Among the several animal models of α-synucleinopathies, the well-known viral vector-mediated delivery of wild-type or mutated (A53T) α-synuclein requires new tools to increase the lesion in mice and follow up in vivo expression. To this end, we developed a bioluminescent expression reporter of the human A53T-α-synuclein gene using the NanoLuc system into an AAV2/9, embedded or not in a fibroin solution to stabilise its expression in space and time. We first verified the expression of the fused protein in vitro on transfected cells by bioluminescence and Western blotting. Next, two groups of C57Bl6Jr mice were unilaterally injected with the AAV-NanoLuc-human-A53T-α-synuclein above the substantia nigra combined (or not) with fibroin. We first show that the in vivo cerebral bioluminescence signal was more intense in the presence of fibroin. Using immunohistochemistry, we find that the human-A53T-α-synuclein protein is more restricted to the ipsilateral side with an overall greater magnitude of the lesion when fibroin was added. However, we also detected a bioluminescence signal in peripheral organs in both conditions, confirmed by the presence of viral DNA corresponding to the injected AAV in the liver using qPCR.


Assuntos
Dependovirus , Fibroínas , Vetores Genéticos , Medições Luminescentes , Camundongos Endogâmicos C57BL , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Dependovirus/genética , Humanos , Camundongos , Medições Luminescentes/métodos , Vetores Genéticos/genética , Fibroínas/metabolismo , Sistema Nervoso Central/metabolismo , Masculino , Luciferases/metabolismo , Luciferases/genética
9.
Chem Biol Drug Des ; 103(3): e14488, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38472166

RESUMO

Breast cancer (BC) is a prevalent malignancy among women worldwide. As an anticancer drug of pyrimidine nucleoside analogs, gemcitabine can be used to treat BC, but its clinical application is restricted due to drug resistance. This study investigated the effect of serum exosomal microRNA-3662 (miR-3662) on gemcitabine resistance in BC cells by targeting RNA-Binding Motif Single-Stranded Interacting Protein 3 (RBMS3) and related molecular mechanisms. We performed the bioinformatics analyses on the differential miRNAs in BC and predicted the downstream regulators. Quantitative real-time polymerase chain reaction was conducted to determine miR-3662 and RBMS3 expression, while dual luciferase was conducted to confirme the regulatory relationship between them. Flow cytometry, cell counting kit-8, and transwell assays were applied to assess apoptosis, cell viability, invasion, and migration. The expression of marker proteins (TSG101, CD63, and CD81) in patients' serum exosomes was evaluated through western blot, and exosomes were observed using transmission electron microscopy. miR-3662 expression was significantly upregulated in BC, and miR-3662 knockdown significantly reduced BC cell viability and gemcitabine resistance. As the downstream gene of miR-3662, RBMS3 was significantly downregulated in BC, and dual luciferase assay verified the binding of RBMS3-3'UTR to miR-3662. Rescue experiments revealed that silencing RBMS3 reversed the inhibitory effect of miR-3662 knockdown on BC cells. Besides, we also found that miR-3662 expression was significantly low in serum exosome samples from BC patients and could be transmitted to tumor cells. miR-3662 was upregulated in serum exosomes and promoted BC cell progression and gemcitabine resistance by targeting RBMS3.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Gencitabina , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , MicroRNAs/genética , Luciferases , Proliferação de Células/genética , Transativadores/metabolismo , Proteínas de Ligação a RNA
10.
Turk Neurosurg ; 34(2): 299-307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497183

RESUMO

AIM: To explore the post-translational regulation of TRPV1, which plays an important role in neuropathic low back pain (NLBP). MATERIAL AND METHODS: qPCR was used to examine the gene mRNA levels. Western blot was used to examine the protein level. NLBP rat model was established for confirming what we observed in clinical samples. Dual-luciferase assay was used to verify the miR-199 targets on the 3'UTR of TRPV1. Cell coculture was used to explore the interaction between macrophages and nerve cells. RESULTS: We found the mRNA level of TRVP1 decreased in the sinuvertebral nerve biopsy of NLBP. With bioinformatics prediction, miR199 would involve the post-transcription regulation of TRPV1. As the prediction, the miR199 level decreased in the clinical samples. Correlation regression analysis showed a negative correlation between miR-199 and TRPV1. The same phenomenon was confirmed in the rat NLBP model. With dual-luciferase assay, we confirmed that miR199 directly binds to the 3'UTR of TRPV1. Through co-culture of macrophage (THP1) and sNF96.2, we found that up or down-regulates miR-199 in macrophage and sNF96.2 could relieve or aggravate the injury of nerve cells strain. CONCLUSION: These results suggest that the occurrence of NLBP may be caused by the lower expression of miR-199 in macrophages and nerve via TRPV1.


Assuntos
Dor Lombar , MicroRNAs , Neuralgia , Animais , Humanos , Ratos , Regiões 3' não Traduzidas , Citocinas , Luciferases/genética , Luciferases/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neuralgia/genética
11.
Sci Rep ; 14(1): 6568, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503887

RESUMO

While Phorbol-12-myristate-13-acetate-induced protein 1 (Noxa/PMAIP1) assumes a pivotal role in numerous tumors, its clinical implications and underlying mechanisms of gastric cancer (GC) are yet enigmatic. In this investigation, our primary objective was to scrutinize the clinical relevance and potential mechanisms of Noxa in gastric cancer. Immunohistochemical analysis was conducted on tissue microarrays comprising samples from a meticulously characterized cohort of 84 gastric cancer patients, accompanied by follow-up data, to assess the expression of Noxa. Additionally, Noxa expression levels in gastric cancer clinical samples and cell lines were measured through quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. The effect of Noxa expression on the prognosis of patients with gastric cancer was evaluated using Kaplan-Meier survival. Further insight into the role of Noxa in driving gastric cancer progression was gained through an array of experimental techniques, including cell viability assays (CCK8), plate cloning assays, transwell assays, scratch assays, and real-time cell analysis (RTCA). Potential upstream microRNAs (miRNAs) that might modulate Noxa were identified through rigorous bioinformatics analysis, substantiated by luciferase reporter assays and Western blot experiments. Additionally, we utilized RNA sequencing, qRT-PCR, and Western blot to identify proteins binding to Noxa and potential downstream target. Finally, we utilized BALB/c nude mice to explore the role of Noxa in vivo. Our investigation unveiled a marked downregulation of Noxa expression in gastric cancer and underscored its significance as a pivotal prognostic factor influencing overall survival (OS). Noxa overexpression exerted a substantial inhibitory effect on the proliferation, migration and invasion of GC cells. Bioinformatic analysis and dual luciferase reporter assays unveiled the capacity of hsa-miR-200b-3p to interact with the 3'-UTR of Noxa mRNA, thereby orchestrating a downregulation of Noxa expression in vitro, consequently promoting tumor progression in GC. Our transcriptome analysis, coupled with mechanistic validation, elucidated a role for Noxa in modulating the expression of ZNF519 in the Mitophagy-animal pathway. The depletion of ZNF519 effectively reversed the oncogenic attributes induced by Noxa. Upregulation of Noxa expression suppressed the tumorigenesis of GC in vivo. The current investigation sheds light on the pivotal role of the hsa-miR-200b-3p/Noxa/ZNF519 axis in elucidating the pathogenesis of gastric cancer, offering a promising avenue for targeted therapeutic interventions in the management of this challenging malignancy.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Luciferases/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/patologia
12.
J Med Virol ; 96(3): e29540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529542

RESUMO

The sex disparity in COVID-19 outcomes with males generally faring worse than females has been associated with the androgen-regulated expression of the protease TMPRSS2 and the cell receptor ACE2 in the lung and fueled interest in antiandrogens as potential antivirals. In this study, we explored enzalutamide, an antiandrogen used commonly to treat prostate cancer, as a potential antiviral against the human coronaviruses which cause seasonal respiratory infections (HCoV-NL63, -229E, and -OC43). Using lentivirus-pseudotyped and authentic HCoV, we report that enzalutamide reduced 229E and NL63 entry and infection in both TMPRSS2- and nonexpressing immortalized cells, suggesting a TMPRSS2-independent mechanism. However, no effect was observed against OC43. To decipher this distinction, we performed RNA-sequencing analysis on 229E- and OC43-infected primary human airway cells. Our results show a significant induction of androgen-responsive genes by 229E compared to OC43 at 24 and 72 h postinfection. The virus-mediated effect on AR-signaling was further confirmed with a consensus androgen response element-driven luciferase assay in androgen-depleted MRC-5 cells. Specifically, 229E induced luciferase-reporter activity in the presence and absence of the synthetic androgen mibolerone, while OC43 inhibited induction. These findings highlight a complex interplay between viral infections and androgen-signaling, offering insights for disparities in viral outcomes and antiviral interventions.


Assuntos
Androgênios , Benzamidas , Coronavirus Humano 229E , Nitrilas , Feniltioidantoína , Masculino , Feminino , Humanos , Androgênios/metabolismo , Androgênios/farmacologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/metabolismo , Estações do Ano , Antivirais/farmacologia , Antivirais/metabolismo , Luciferases
13.
Front Biosci (Landmark Ed) ; 29(3): 106, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38538281

RESUMO

BACKGROUND: Bortezomib (BTZ) is a powerful proteasome inhibitor that has been approved for the treatment of haematologic malignancies. Its effectiveness has been assessed against different types of solid tumours. BTZ is ineffective in most solid tumours because of drug resistance, including cholangiocarcinoma, which is associated with a proteasome bounce-back effect. However, the mechanism through which proteasome inhibitors induce the proteasome bounce-back effect remains largely unknown. METHODS: Cholangiocarcinoma cells were treated with BTZ, cisplatin, or a combination of both. The mRNA levels of Nfe2l1 and proteasome subunit genes (PSMA1, PSMB7, PSMD1, PSMD11, PSMD14, and PSME4) were determined using quantitative real time polymerase chain reaction (qPCR). The protein levels of nuclear factor-erythroid 2-related factor 1 (Nfe2l1) and proteasome enzyme activity were evaluated using western blotting and proteasome activity assays, respectively. Transcriptome sequencing was performed to screen for potential transcription factors that regulate Nfe2l1 expression. The effect of zinc finger E-box-binding homeobox 1 (ZEB1) on the expression of Nfe2l1 and proteasome subunit genes, as well as proteasome enzyme activity, was evaluated after the knockdown of ZEB1 expression with siRNA before treatment with BTZ. The transcriptional activity of ZEB1 on the Nfe2l1 promoter was detected using dual-luciferase reporter gene and chromatin immunoprecipitation assays. Cell viability was measured using the cell counting kit-8 (CCK-8) assay and cell apoptosis was assessed using western blotting and flow cytometry. RESULTS: Cisplatin treatment of BTZ-treated human cholangiocarcinoma cell line (RBE) suppressed proteasome subunit gene expression (proteasome bounce-back) and proteasomal enzyme activity. This effect was achieved by reducing the levels of Nfe2l1 mRNA and protein. Our study utilised transcriptome sequencing to identify ZEB1 as an upstream transcription factor of Nfe2l1, which was confirmed using dual-luciferase reporter gene and chromatin immunoprecipitation assays. Notably, ZEB1 knockdown using siRNA (si-ZEB1) hindered the expression of proteasome subunit genes under both basal and BTZ-induced conditions, leading to the inhibition of proteasomal enzyme activity. Furthermore, the combination treatment with BTZ, cisplatin, and si-ZEB1 significantly reduced the viability of RBE cells. CONCLUSIONS: Our study uncovered a novel mechanism through which cisplatin disrupts the BTZ-induced proteasome bounce-back effect by suppressing the ZEB1/Nfe2l1 axis in cholangiocarcinoma. This finding provides a theoretical basis for developing proteasome inhibitor-based strategies for the clinical treatment of cholangiocarcinoma and other tumours.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Cisplatino/farmacologia , Bortezomib/farmacologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , RNA Interferente Pequeno , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Luciferases , RNA Mensageiro , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Transativadores
14.
Front Biosci (Elite Ed) ; 16(1): 6, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538524

RESUMO

BACKGROUND: This research explores the significance of miR-215-5p and vasculogenic mimicry (VM) in forecasting the prognosis for hepatocellular carcinoma (HCC). METHODS: We analyzed HCC-associated miRNA expression profiles using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Samples included tissue and blood from 80 early-stage HCC patients and serum from 120 healthy individuals. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to measure miR-215-5p and zinc finger E-box binding homeobox 2 (ZEB2) gene expressions. Hematoxylin and eosin (H&E) and CD34/Periodic Acid-Schiff (PAS) double staining assessed VM presence in HCC tissue sections. Bioinformatics tools predicted interactions between miR-215-5p and ZEB2, confirmed through luciferase reporter assays. We also examined the impact of miR-215-5p or ZEB2 overexpression on HCC cell invasion, migration, and VM formation using scratch, Transwell invasion assays, and Matrigel 3D cultures. RESULTS: Bioinformatics analysis indicated that miR-215-5p was under-expressed in HCC, particularly in cases with vascular invasion, which correlated with worse patient outcomes. In contrast, ZEB2, targeted by miR-215-5p, was overexpressed in HCC. RT-qPCR validated these expression patterns in HCC tissues. Among the HCC patients, 38 were VM positive and 42 VM negative. Logistic regression highlighted a negative correlation between miR-215-5p levels and VM positivity in HCC tissues and a positive correlation for ZEB2 with VM positivity and tumor vascular invasion. Lower miR-215-5p levels were linked to increased HCC recurrence and metastasis. Both bioinformatics analysis and luciferase assays demonstrated a direct interaction between miR-215-5p and ZEB2. Enhancing miR-215-5p levels reduced ZEB2 expression, consequently diminishing invasion, migration, and VM formation of the HCC cells in vitro. CONCLUSIONS: miR-215-5p expression inversely correlates with VM occurrence in HCC tissues, while ZEB2 expression shows a direct correlation. By targeting ZEB2, miR-215-5p may hinder VM in HCC tissues, helping to prevent vascular invasion and HCC recurrence. Thus, miR-215-5p emerges as a vital prognostic indicator for predicting vascular invasion and recurrence in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Luciferases/genética , Luciferases/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
15.
BMC Cancer ; 24(1): 346, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500100

RESUMO

BACKGROUND: The androgen/androgen receptor (AR)-signaling axis plays a central role in prostate cancer (PCa). Upon androgen-binding the AR dimerizes with another AR, and translocates into the nucleus where the AR-dimer activates/inactivates androgen-dependent genes. Consequently, treatments for PCa are commonly based on androgen deprivation therapy (ADT). The clinical benefits of ADT are only transitory and most tumors develop mechanisms allowing the AR to bypass its need for physiological levels of circulating androgens. Clinical failure of ADT is often characterized by the synthesis of a constitutively active AR splice variant, termed AR-V7. AR-V7 mRNA expression is considered as a resistance mechanism following ADT. AR-V7 no longer needs androgenic stimuli for nuclear entry and/or dimerization. METHODS: Our goal was to mechanistically decipher the interaction between full-length AR (AR-FL) and AR-V7 in AR-null HEK-293 cells using the NanoLuc Binary Technology under androgen stimulation and deprivation conditions. RESULTS: Our data point toward a hypothesis that AR-FL/AR-FL homodimers form in the cytoplasm, whereas AR-V7/AR-V7 homodimers localize in the nucleus. However, after androgen stimulation, all the AR-FL/AR-FL, AR-FL/AR-V7 and AR-V7/AR-V7 dimers were localized in the nucleus. CONCLUSIONS: We showed that AR-FL and AR-V7 form heterodimers that localize to the nucleus, whereas AR-V7/AR-V7 dimers were found to localize in the absence of androgens in the nucleus.


Assuntos
Luciferases , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Androgênios , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Células HEK293 , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/genética
16.
J Orthop Surg Res ; 19(1): 190, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500202

RESUMO

PURPOSE: To study the effect of miR-150-5p on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), and further explore the relationship between its regulatory mechanism and irisin. METHODS: We isolated mouse BMSCs, and induced osteogenic differentiation by osteogenic induction medium. Using qPCR to detect the expression of osteogenic differentiation-related genes, western blot to detect the expression of osteogenic differentiation-related proteins, and luciferase reporter system to verify that FNDC5 is the target of miR-150-5p. Irisin intraperitoneal injection to treat osteoporosis in mice constructed by subcutaneous injection of dexamethasone. RESULTS: Up-regulation of miR-150-5p inhibited the proliferation of BMSCs, and decreased the content of osteocalcin, ALP activity, calcium deposition, the expression of osteogenic differentiation genes (Runx2, OSX, OCN, OPN, ALP and BMP2) and protein (BMP2, OCN, and Runx2). And down-regulation of miR-150-5p plays the opposite role of up-regulation of miR-150-5p on osteogenic differentiation of BMSCs. Results of luciferase reporter gene assay showed that FNDC5 gene was the target gene of miR-150-5p, and miR-150-5p inhibited the expression of FNDC5 in mouse BMSCs. The expression of osteogenic differentiation genes and protein, the content of osteocalcin, ALP activity and calcium deposition in BMSCs co-overexpressed by miR-150-5p and FNDC5 was significantly higher than that of miR-150-5p overexpressed alone. In addition, the overexpression of FNDC5 reversed the blocked of p38/MAPK pathway by the overexpression of miR-150-5p in BMSCs. Irisin, a protein encoded by FNDC5 gene, improved symptoms in osteoporosis mice through intraperitoneal injection, while the inhibitor of p38/MAPK pathway weakened this function of irisin. CONCLUSION: miR-150-5p inhibits the osteogenic differentiation of BMSCs by targeting irisin to regulate the/p38/MAPK signaling pathway, and miR-150-5p/irisin/p38 pathway is a potential target for treating osteoporosis.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Animais , Camundongos , Medula Óssea , Cálcio/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Luciferases/metabolismo , Luciferases/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteocalcina/metabolismo , Osteogênese/genética , Osteoporose/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo
17.
Life Sci ; 345: 122592, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554947

RESUMO

Osteoporosis, characterized by bone metabolism disruption leading to gradual bone loss and increased fracture susceptibility, is linked to the excessive activation of osteoclasts. Pseudolaric acid B (PAB), identified as an NF-κB signaling inhibitor crucial for osteoclastogenesis, is explored here for its protective effects in osteoporosis. Noncytotoxic PAB's impact on osteoclast differentiation was assessed through cell viability and osteoclast formation assays, with subsequent testing of osteoclast function via bone resorption assays. Quantitative real-time polymerase chain reaction evaluated PAB's genetic-level impact on osteoclastogenesis. Network pharmacology, western blot, and luciferase reporter gene assays were employed to elucidate PAB's regulatory mechanism. In an in vivo model of osteoporosis induced by ovariectomy (OVX) in mice, micro-CT, H&E staining, and TRAP staining facilitated histomorphometry analysis, while flow cytometry verified macrophage polarization. PAB demonstrated inhibitory effects on osteoclast formation and bone resorption in BMM and RAW264.7 cells, suppressing osteoclast-specific genes. Bioinformatic analysis, western blot, and luciferase assay results indicated PAB's inhibition of IκBα phosphorylation in the NF-κB signaling pathway and ERK in MAPKs, elucidating its mechanism. In vivo experiments confirmed PAB's attenuation of osteoporosis by reducing osteoclast formation in OVX mice. PAB further facilitated macrophage conversion from M1 to M2 and suppressed IL-1ß, TNF-α, and IL-6 synthesis. In conclusion, PAB prevents osteoporosis by inhibiting RANKL-induced osteoclastogenesis through NF-κB and ERK signaling pathway suppression, coupled with macrophage polarization. These findings indicate the potential therapeutic role of PAB in osteoporosis.


Assuntos
Reabsorção Óssea , Diterpenos , Osteoporose , Animais , Feminino , Humanos , Camundongos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Diferenciação Celular , Diterpenos/farmacologia , Luciferases/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Osteoclastos , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , Ovariectomia , Ligante RANK/metabolismo , Transdução de Sinais
18.
Crit Rev Eukaryot Gene Expr ; 34(4): 13-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505869

RESUMO

Lung adenocarcinoma (LUAD) severely affects human health, and cisplatin (DDP) resistance is the main obstacle in LUAD treatment, the mechanism of which is unknown. Bioinformatics methods were utilized to predict expression and related pathways of AURKB in LUAD tissues, as well as the upstream regulated microRNAs. qRT-PCR assayed expression of AURKB and microRNA-486-5p. RIP and dual-luciferase experiments verified the binding and interaction between the two genes. CCK-8 was used to detect cell proliferation ability and IC50 values. Flow cytometry was utilized to assess the cell cycle. Comet assay and western blot tested DNA damage and γ-H2AX protein expression, respectively. In LUAD, AURKB was upregulated, but microRNA-486-5p was downregulated. The targeted relationship between the two was confirmed by RIP and dual-luciferase experiments. Cell experiments showed that AURKB knock-down inhibited cell proliferation, reduced IC50 values, induced cell cycle arrest, and caused DNA damage. The rescue experiment presented that high expression of microRNA-486-5p could weaken the impact of AURKB overexpression on LUAD cell behavior and DDP resistance. microRNA-486-5p regulated DNA damage to inhibit DDP resistance in LUAD by targeting AURKB, implying that microRNA-486-5p/AURKB axis may be a possible therapeutic target for DDP resistance in LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Cisplatino/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Dano ao DNA , MicroRNAs/genética , Proliferação de Células , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Luciferases , Linhagem Celular Tumoral , Aurora Quinase B
19.
Cell Mol Biol Lett ; 29(1): 43, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539084

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are single-stranded RNAs with covalently closed structures that have been implicated in cancer progression. However, the regulatory mechanisms remain largely unclear. So, the aim of this study was to reveal the role and regulatory mechanisms of circ-SLC16A1. METHODS: In this study, next-generation sequencing was used to identify abnormally expressed circRNAs between cancerous and para-carcinoma tissues. Fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction were performed to assess the expression patterns of circ-solute carrier family 16 member 1 (SLC16A1) in non-small cell lung cancer (NSCLC) cells and tissue specimens. The dual-luciferase reporter assay was utilized to identify downstream targets of circ-SLC16A1. Transwell migration, wound healing, 5-ethynyl-2'-deoxyuridine incorporation, cell counting, and colony formation assays were conducted to assess the proliferation and migration of NSCLC cells. A mouse tumor xenograft model was employed to determine the roles of circ-SLC16A1 in NSCLC progression and metastasis in vivo. RESULTS: The results found that circ-SLC16A1 was upregulated in NSCLC cells and tissues. Downregulation of circ-SLC16A1 inhibited tumor growth by reducing proliferation, lung metastasis, and lymphatic metastasis of NSCLC cells, and arrested the cell cycle in the G1 phase. Also, silencing of circ-SLC16A1 promoted apoptosis of NSCLC cells. The results of bioinformatics analysis and the dual-luciferase reporter assay confirmed that microRNA (miR)-1287-5p and profilin 2 (PFN2) are downstream targets of circ-SLC16A1. PFN2 overexpression or circ-SLC16A1 inhibition restored proliferation and migration of NSCLC cells after silencing of circ-SLC16A1. PFN2 overexpression restored migration and proliferation of NSCLC cells post miR-1287-5p overexpression. CONCLUSIONS: Collectively, these findings show that miR-1287-5p/PFN2 signaling was associated with downregulation of circ-SLC16A1 and reduced invasion and proliferation of NSCLC cells. So, circ-SLC16A1 is identified as a mediator of multiple pro-oncogenic signaling pathways in NSCLC and can be targeted to suppress tumor progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Hibridização in Situ Fluorescente , Luciferases , Neoplasias Pulmonares/genética , MicroRNAs/genética , Profilinas , RNA Circular/genética
20.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(2): 166-171, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38442933

RESUMO

OBJECTIVE: To investigate the protective effect of Xuebijing injection on acute lung injury (ALI) associated with cardiopulmonary bypass (CPB) by regulating the apoptosis of polymorphonuclear neutrophils (PMN). METHODS: Thirty male Sprague-Dawley (SD) rats were randomly divided into sham operation group (Sham group), CPB model group (CPB group) and Xuebijing pretreatment group (XBJ group) according to the random number table method, with 10 rats in each group. Rats in the CPB group and XBJ group undergoing CPB procedures for 60 minutes. Rats in the Sham group did not undergo CPB. Rats in the XBJ group received intraperitoneal injection of 4 mL/kg Xuebijing injection 2 hours before CPB. Rats in the Sham group and CPB group were injected with an equal amount of normal saline. 4 hours after CPB, arterial blood was collected for blood gas analysis to calculate respiratory index (RI), and lung tissue of rats was collected for determination of lung index (LI) and pulmonary water containing rate. PMN in bronchoalveolar lavage fluid (BALF) were collected and the activity of caspase-3 was detected. The apoptosis rate was detected by flow cytometry. The expressions of microRNA-142-3p (miR-142-3p) and FoxO1 mRNA were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). The protein expression of FoxO1 was detected by Western blotting. In addition, HL-60 cells were divided into control oligonucleotide transfection group, miR-142-3p mimics transfection group, and miR-142-3p inhibitor transfection group. After 48 hours of transfection, the activity of miR-142-3p binding to FoxO1 was detected using dual luciferase reporter genes. RESULTS: Compared with Sham group, RI, LI and pulmonary water containing rate were significantly increased in CPB group. The caspase-3 activity and apoptosis rate of PMN obtained from BALF were significantly decreased, the expression of miR-142-3p was decreased, and the expression of FoxO1 protein was increased. However, compared with CPB group, RI, LI and pulmonary water containing rate were significantly decreased in XBJ group [RI: 0.281±0.066 vs. 0.379±0.071, LI: 4.50±0.26 vs. 5.71±0.42, pulmonary water containing rate: (80.31±32.50)% vs. (84.59±3.41)%, all P < 0.01]. The caspase-3 activity and apoptosis rate of PMN obtained from BALF were significantly increased [caspase-3 activity: 0.350±0.021 vs. 0.210±0.014, apoptosis rate: (15.490±1.382)% vs. (8.700±0.701)%, both P < 0.01], the expression of miR-142-3p was significantly up-regulated (2-ΔΔCt: 2.61±0.17 vs. 0.62±0.05, P < 0.01), and the protein expression of FoxO1 was decreased [FoxO1/GAPDH (relative expression level): 0.81±0.04 vs. 1.22±0.06, P < 0.01]. However, there was no statistically significant difference in FoxO1 mRNA expression among the three groups. The bioinformatics analysis results showed that miR-142-3p can bind to the FoxO1 3'untranslated region (3'UTR). In HL-60 cells, compared with control oligonucleotide transfection group, the transfection of miR-142-3p mimics could reduce the expression of FoxO1 protein [FoxO1/GAPDH (relative expression level): 0.48±0.06 vs. 1.00±0.05, P < 0.01], however, the transfection of miR-142-3p inhibitor increased the expression of FoxO1 protein [FoxO1/GAPDH (relative expression level): 1.37±0.21 vs. 1.00±0.05, P < 0.05]. But, transfection with miR-142-3p mimics or inhibitor had no effect on FoxO1 mRNA expression. The luciferase reporter gene showed that miR-142-3p could bind to the FoxO1 3'UTR to inhibit FoxO1 expression. CONCLUSIONS: Xuebijing injection may promote the apoptosis of pulmonary alveolar PMN through the miR-142-3p/FoxO1 axis, and play a role in the prevention and treatment of CPB-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Medicamentos de Ervas Chinesas , MicroRNAs , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Ponte Cardiopulmonar/efeitos adversos , Neutrófilos , Caspase 3 , Proteína Forkhead Box O1 , Regiões 3' não Traduzidas , Luciferases , Oligonucleotídeos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA